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Abstract
We have used Markov chain Monte Carlo methods to study the nature of the
phase transition in a self-avoiding walk model of localization of a random
copolymer at an interface between two immiscible solvents. We present
evidence that the order of the phase transition is different in different regions
of the phase diagram.

PACS numbers: 05.10.Ln, 05.50.+q, 82.35.Jk

Random copolymers are polymers with at least two kinds of monomer which are distributed
at random along the polymer chain. We shall be concerned here with linear polymers having
two kinds of monomer which we call A and B. For a polymer with n monomers we label the
monomers i = 1, 2, . . . n and write χi = A if the ith monomer is of type A and χi = B if
the ith monomer is of type B. The χi are independent random variables and we write p for the
probability that χi = A.

This system is an interesting example of a system with quenched randomness (Brout 1959)
since the sequence of monomers in a particular polymer molecule is determined by a random
process but, once chosen, the sequence is fixed. Suppose we have two immiscible solvents α

and β and suppose that it is energetically favourable for A monomers to be in solvent α and for
B monomers to be in solvent β. Then the system can show interesting localization behaviour
(Sinai and Spohn 1996, Bolthausen and den Hollander 1997, Biskup and den Hollander 1999,
Maritan et al 1999, Martin et al 2000). At high temperatures the polymer will pick the
energetically most favourable solvent and delocalize into that phase. At low temperatures
it will arrange itself at and near the interface to optimize the numbers of monomers in their
prefered solvent.

The model which we shall discuss here was first introduced by Martin et al (2000). The
polymer is modelled as an n-edge self-avoiding walk on the simple cubic lattice Z3, starting at
the origin. The vertices of the walk are numbered i = 0, 1, 2, . . . n and vertices 1, 2, . . . n are
randomly and independently coloured A or B. The region of the lattice with z > 0 corresponds
to the α solvent, the region with z < 0 corresponds to the β solvent and the plane z = 0 is
the interfacial plane. If a vertex coloured A has positive z-coordinate it contributes a reduced
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Figure 1. Sketch of phase diagram when p = 1/2. In the second and the fourth quadrants the
polymer is delocalized into the β and α solvents, respectively. The full curves are phase boundaries
corresponding to localization and the quenched average free energy is singular along these curves.

energy α and if a vertex coloured B has negative z-coordinate it contributes a reduced energy β.
Vertices in the interfacial plane z = 0 make no contribution to the energy. Write χ as shorthand
for {χ1, χ2, . . . χn}. Given the colouring χ suppose that cn(vA, vB |χ) is the number of n-edge
self-avoiding walks with vA A-vertices having positive z-coordinate and vB B-vertices having
negative z-coordinate. Then the partition function is

Zn(α, β|χ) =
∑

vA,vB

cn(vA, vB |χ) eαvA+βvB (1)

and the associated free energy is

κn(α, β|χ) = n−1 log Zn(α, β|χ). (2)

Martin et al (2000) proved the existence of the limiting quenched average free energy

κ̄(α, β) = lim
n→∞〈κn(α, β|χ)〉 (3)

where the angle brackets denote an average over colourings. They showed that in the second
quadrant of the (α, β)-plane, α < 0, β > 0, κ̄(α, β) = κ3 + (1 − p)β and in the fourth
quadrant κ̄(α, β) = κ3 + pα, where p is the probability that a monomer is an A-monomer
and κ3 is the connective constant of the simple cubic lattice. These values correspond to
the polymer being delocalized into the β and α phases, respectively, and show that the free
energy is not differentiable at the origin along lines such as β = −α. They also showed
that the free energy is singular along certain curves in the first and third quadrants of the
(α, β)-plane, corresponding to the localization transition, and that these phase boundaries have
horizontal and vertical asymptotes. The locations of the phase boundaries were estimated by
exact enumeration and series analysis methods. See figure 1 for a sketch of the expected phase
diagram when p = 1/2.

Although we have quite a lot of qualitative information about the nature of the phase
diagram, and a rough idea of the locations of the phase boundaries, nothing seems to be known
about the nature of the phase transitions between the localized and delocalized phases. The
purpose of this letter is to report a Monte Carlo investigation of the nature of these phase
transitions.
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Figure 2. Dependence of uB/n on β and n when α = −3 (left) and collapse of data obtained for
φ = 0.53 and βc = −0.414 (right).

The system is strongly interacting and, to mitigate quasi-ergodic problems, we have
used a Monte Carlo scheme which samples at different values of the parameters α and β

simultaneously, with swapping of configurations between different parameter values. This
approach, originally invented by Geyer (1991), has been shown to be very effective in strongly
interacting polymer problems (see, e.g., Tesi et al (1996)). One constructs a set of Markov
chains, each operating at a particular pair of values of α and β, with limit distribution
given by the appropriate Boltzmann factor, and designs swapping probabilities that ensure
that the limit distribution of the process is the product of the limit distributions of the
individual Markov chains: see Tesi et al (1996) for technical details. The individual Markov
chains still need to be carefully designed and we used a mixture of non-local moves (Lal
1969, Madras and Sokal 1988, Causo 2002) and local moves (Verdier and Stockmayer 1962).
The proportion of attempted local and non-local moves was varied in different parts of the
(α, β)-plane to improve the convergence rate of the Markov chains.

We investigated the nature of the phase transition in the third quadrant (α, β < 0) when
p = 1/2 by fixing the value of α = −3 and estimating the values of thermodynamic and metric
quantities for 0 � β � −0.7. This involved constructing a set of Markov chains including
values from (0, 0) along the α-axis to (−3, 0) and at a set of β values with α fixed at −3.
Estimates were obtained for various values of n up to n = 2000. With n, α, β and χ fixed,
let vB(α, β|χ) be the expectation (over the set of walks with fixed colouring) of the number
of vertices coloured B which have negative z-coordinate. Let B(χ) be the total number of
vertices coloured B. Define

uB = 〈vB(α, β|χ)〉 − 〈B(χ)〉 (4)

where 〈· · ·〉 denotes the average over χ . The observable uB is defined in such a way that
uB = o(n) when the walk is delocalized into the β solvent (and in particular when α < 0 and
β > 0). When the value of β is decreased to a value below the phase boundary, β < βc(α), the
number of B vertices with non-negative z-coordinate increases linearly with n while exactly on
the phase boundary (β = βc(α)) we expect that uB ∼ nφ , with φ � 1. One can look at uB/n

as the order parameter, which is non-vanishing (in the infinite n limit) only in the localized
phase. The overall crossover scaling behaviour of the order parameter is expected to be

uB/n ∼ nφ−1f [(β − βc)n
φ] (5)

where f (x) is a scaling function such that f (0) = const �= 0 and f (x) ∼ |x|−1+ 1
φ for

x → −∞ and f (x) → 0 for x → ∞. Figure 2 (left) shows the β-dependence of uB/n for
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Figure 3. Dependence of the extensive heat capacity on β and n.

various values of n from n = 500 to n = 2000. There is clear evidence of strong corrections to
scaling around β = −0.4, where the crossover between the localized and delocalized regimes
takes place. For β � −0.4 the curve is close to 0, corresponding to delocalization into the
β-solvent. Figure 2 (right) shows the best collapse on a single curve obtained by fitting all data
with n > 500 and −0.55 � β � −0.30 to a polynomial of degree 4 in the scaling variable.
The degree of the polynomial was chosen so that the results were compatible (within error
bars) with those obtained by fitting to higher degree polynomials. We did not include data
for n = 500 because they are subject to large corrections-to-scaling. Indeed, we found that
our results from data with n � nmin, for different values of nmin, were compatible within error
bars only for those nmin > 500. We only considered β values less than or equal to −0.30 so
as to focus on values where the order parameter is non-zero. We tried fitting with a variety of
minimum values for β and eventually chose βmin = −0.55 as the lowest value for which the
results of the fits were compatible within error bars.

The best fit corresponds to φ = 0.53 and βc = −0.414. Defining the range of variability
of φ (resp. βc) as the interval including all φ (resp. βc) values for which some value of βc

(resp. φ) was found for which data could be fitted with a χ2 per degree of freedom less than 1,
we estimate 0.52 � φ � 0.56 and −0.42 � βc � −0.41. As we increased the minimum
value of n considered, the best value obtained for φ decreased, reaching φ = 0.49 when we
included only n = 1500 and 2000, while the best estimate for βc increased to βc = −0.39. At
the same time the range of variability broadened both for βc and φ.

We would expect peaks in the extensive heat capacity which grow as n2φ as n increases.
Figure 3 shows the extensive heat capacity C(β) = ∂uB

∂β
as a function of β at α = −3 for various

values of n. We clearly see peaks whose positions shift and whose heights grow slightly faster
than linearly as n increases. It is difficult to estimate φ from the scaling of the peak heights
(when φ is close to 1/2) but our best estimate is φ = 0.53±0.02. Alternatively, assuming that
φ = 1/2, we have determined the location of the transition from the way the locations of the
maxima change with n and estimated βc = −0.42 ± 0.05, consistent with our estimates from
fitting to the assumed scaling form given above, but with much higher uncertainty. Changing
the assumed value of the crossover exponent to φ = 0.53 makes only a small difference (about
one error bar) to the estimated value of βc.
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Figure 4. Collapse of data for zend obtained with φ = 0.48 and βc = −0.424.

We have also estimated the expected value of the z-component of the end point of the
walk, zend(n, β). By analogy with what is known about the scaling of metric properties at the
special point (see, e.g., Diehl et al (1998)), we expect that

zend(n, β) ∼ nνh[(β − βc)n
φ] (6)

where h(x) is a scaling function such that h(0) = const �= 0, h(x) → 0 for x → −∞, and
h(x) → const �= 0 for x → ∞. In order to find the best scaling form for our data, we have
performed the same kind of analysis as for uB and tried to fit our rescaled data to a sixth degree
polynomial in the scaling variable. Results seem to be less sensitive to corrections-to-scaling,
so that we could consider all data with n � 500 and −0.60 � β � −0.29. From the best fit we
have obtained φ = 0.48 and βc = −0.424, but with a very large range of variability. Indeed, the
range of variability was such that we estimate 0.45 � φ � 0.55 and −0.43 � βc � −0.40. The
best rescaling for all available n values is shown in figure 4. Our estimates for the exponent
φ are close to the value found for adsorption at an impenetrable surface by Hegger et al
(1994). This was not unexpected, since Martin et al (2000) showed that there is a connection
between the localization problem in the third quadrant and adsorption at an impenetrable
surface.

We now turn our attention to the phase boundary in the first quadrant. For α = 3, we
have estimated the values of several thermodynamic and metric quantities as a function of
β and n, for n = 500, 1000, 1500, 2000 and 0 � β � 1.7. From the work of Martin
et al (2000) we know rigorously that there is a phase boundary in this quadrant (i.e. there
is a curve in the quadrant where the quenched average free energy is singular) and Martin
et al (2000) gave a rough estimate of the location of the phase boundary based on exact
enumeration and series analysis techniques, and estimated that βc(3) is about 1. Surprisingly
we found no evidence of peaks in the heat capacity for values of β between zero and
2, which suggested that the exponent φ could be less than 1/2. In this region of the
phase diagram, we can define as order parameter uB/n = 〈vB(α, β|χ)〉/n. It is a simple
matter to see that, for n → ∞, uB/n is non-zero only in the localized phase. The scaling
relations in equations (5) and (6) still hold, but the asymptotic behaviour is now ‘reversed’,

f (x) ∼ |x|−1+ 1
φ for x → +∞ and f (x) → 0 for x → −∞, h(x) → 0 for x → +∞ and

h(x) → const for x → −∞. Therefore, we were able to estimate βc and φ by performing
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Figure 5. Data for zend(n, β) at different values of n and β, rescaled as in equation (6) with
βc = 1.28 and φ = 0.24.
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Figure 6. Data for uB = vB at different values of n and β, rescaled as in equation (5) with
βc = 1.32 and φ = 0.26.

the same kind of scaling analysis as for α = −3. We fitted our data for the metric quantity
zend(n, β) to a polynomial of fourth degree in the scaling variable (β − βc)n

φ . Error bars
on our data were larger than in the third quadrant. Therefore results were less sensitive to
changes in βc and φ and, including data for all n values, we estimate 1.24 � βc � 1.32 and
0.20 � φ � 0.30. Figure 5 shows the collapse of our data with the best estimates φ = 0.24 and
βc = 1.28. We analysed our data for uB in the same way. They seemed to be more affected by
corrections to scaling, so that we did not find a fitting form with χ2 per degree of freedom less
than 1 including values for the lower value of n. Disregarding data for n = 500, we obtained
as best estimates βc = 1.32 and φ = 0.26, with a range of variability 0.24 � φ � 0.30 and
1.28 � βc � 1.4. Figure 6 shows the best rescaling for n � 1000. From our analysis we
can conclude that at α = 3 the localization transition takes place for 1.24 � βc � 1.4 with
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exponent 0.2 � φ � 0.3. Therefore our data indicate that the free energy is at least twice
differentiable and the localization transition in the first quadrant is higher than second order.
Although we have not attempted to find the location at which the transition switches from
second to higher order, the origin seems to be a good candidate.
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